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Hydrogen

1.0079
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Na
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(223)

1
IA

6

C
Carbon
12.011

Atomic number:

Symbol :
Name (IUPAC) :

Atomic mass :4

Be
Berylium
9.0122

12

Mg
Magnesium

24.305
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Ca
Calcium
40.078
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Sr
Strontium

87.62
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Ba
Barium
137.33
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Ra
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2
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Sc
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44.956
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Y
Yttrium
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*La
Lanthanum

138.91
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(227)

4
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Ti
Titanium
47.867

40

Zr
Zirconium

91.224
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Hf
Hafnium
178.49

104

Rf
Rutherfordium

(261)

5
VB
23

V
Vanadium

50.942

41

Nb
Niobium
92.906
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Ta
Tantalum
180.95
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Db
Dubnium

(262)

6
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Cr
Chromium

51.996

42

Mo
Molybdenum

95.94
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W
Tungsten
183.84
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Sg
Seaborgium

(266)
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VIIB
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Mn
Manganese

54.938

43

Tc
Technetium

(98)
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Re
Rhenium
186.21
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Bh
Bohrium

(264)
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VIIIB
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Fe
Iron
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Ru
Ruthenium

101.07
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Osmium
190.23

108

Hs
Hassium
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9
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58.933
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Rh
Rhodium
102.91
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Iridium
192.22
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Mt
Meitnerium

(268)
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VIIIB
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Ni
Nickel
58.693
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Pd
Palladium
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Pt
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Ds
(281)
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Cu
Copper
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Silver

107.87
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Au
Gold

196.97
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Rg
(272)
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Zn
Zinc

65.409

48

Cd
Cadmium

112.41
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Hg
Mercury
200.59
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Cn
(285)
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B
Boron
10.811

13

Al
Aluminum

26.982

31

Ga
Gallium
69.723

49

In
Indium
114.82

81

Tl
Thallium
204.38
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IIIA
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C
Carbon
12.011
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Si
Silicon
28.086

32

Ge
Germanium

72.64
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Sn
Tin

118.71
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Pb
Lead
207.2

114

Fl
(289)

113

Uut
(284)

115

Uup
(288)

117

Uus
(294)
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Uuo
(294)
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Lv
(293)

14
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N
Nitrogen
14.007
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P
Phosphorus

30.974

33

As
Arsenic
74.922

51

Sb
Antimony
121.76

83

Bi
Bismuth
208.98
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O
Oxygen
15.999

16

S
Sulfur
32.065

34

Se
Selenium

78.96

52

Te
Tellurium
127.60

84

Po
Polonium

(209)

16
VIA

9

F
Fluorine
18.998

17

Cl
Chlorine
35.453

35

Br
Bromine
79.904

53

I
Iodine
126.90

85

At
Astatine

(210)

17
VIIA
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He
Helium
4.0026

10

Ne
Neon

20.180
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Ar
Argon
39.948

36

Kr
Krypton
83.798

54

Xe
Xenon
131.29

86

Rn
Radon
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IUPAC recommendations:
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58

Ce
Cerium
140.12

90

Th
Thorium
232.04

59

Pr
Praseodymium

140.91

91

Pa
Protactinium

231.04

60

Nd
Neodymium

144.24

92

U
Uranium
238.03

61

Pm
Promethium

(145)

93

Np
Neptunium

(237)

62

Sm
Samarium

150.36

94

Pu
Plutonium

(244)

63

Eu
Europium

151.96

95

Am
Americium

(243)

64

Gd
Gadolinium

157.25

96

Cm
Curium
(247)

65

Tb
Terbium
158.93

97

Bk
Berkelium

(247)

66

Dy
Dysprosium

162.50

98

Cf
Californium

(251)

67

Ho
Holmium
164.93

99

Es
Einsteinium

(252)

68

Er
Erbium
167.26

100

Fm
Fermium

(257)

69

Tm
Thulium
168.93

101

Md
Mendelevium

(258)

70

Yb
Ytterbium

173.04

102

No
Nobelium

(259)

71

Lu
Lutetium
174.97

103

Lr
Lawrencium

(262)

*Lanthanide Series

# Actinide Series

Flerovium LivermoriumDarmstadtium Roentgenium Copernicium



Table 3.1 RelaTive STRengTh of SelecTed acidS and TheiR conjugaTe baSeS

 
Acid

 
Approximate pKa

Conjugate 
Base

Strongest acid HSbF6 6 -12 SbF6
- Weakest base

HI -10 I-

H2SO4 -9 HSO4
-

HBr -9 Br-

HCl -7 Cl-

C6H5SO3H -6.5 C6H5SO3
-

(CH3)2OH -3.8 (CH3)2O
(CH3)2C “ OH -2.9 (CH3)2C “ O

CH3OH2 -2.5 CH3OH
H3O

+ -1.74 H2O
HNO3 -1.4 NO3

-

CF3CO2H 0.18 CF3CO2
-

HF 3.2 F-

C6H5CO2H 4.21 C6H5CO2
-

C6H5NH3
+ 4.63 C6H5NH2

CH3CO2H 4.75 CH3CO2
-

H2CO3 6.35 HCO3
-

CH3COCH2COCH3 9.0 CH3COC
-
HCOCH3

NH4
+ 9.2 NH3

C6H5OH 9.9 C6H5O
-

HCO3
- 10.2 CO3

2-

CH3NH3
+ 10.6 CH3NH2

H2O 15.7 HO-

CH3CH2OH 16 CH3CH2O
-

(CH3)3COH 18 (CH3)3CO-

CH3COCH3 19.2 -CH2COCH3

HC ‚ CH 25 HC ‚ C-

C6H5NH2 31 C6H5NH-

H2 35 H-

(i-Pr)2NH 36 (i-Pr)2N
-

NH3 38 -NH2

CH2 “ CH2 44 CH2 “ CH-

Weakest acid CH3CH3 50 CH3CH2
- Strongest base 
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“It’s orGAnIc cHemIstry!”
That’s what we want students to exclaim after they become acquainted with our subject. Our 
lives revolve around organic chemistry, whether we all realize it or not. When we understand 
organic chemistry, we see how life itself would be impossible without it, how the quality of our 
lives depends upon it, and how examples of organic chemistry leap out at us from every direction. 
That’s why we can envision students enthusiastically exclaiming “It’s organic chemistry!” when, 
perhaps, they explain to a friend or family member how one central theme—organic chemistry—
pervades our existence. We want to help students experience the excitement of seeing the world 
through an organic lens, and how the unifying and simplifying nature of organic chemistry helps 
make many things in nature comprehensible. 

Our book makes it possible for students to learn organic chemistry well and to see the marvel-
ous ways that organic chemistry touches our lives on a daily basis. Our book helps students develop 
their skills in critical thinking, problem solving, and analysis—skills that are so important in today’s 
world, no matter what career paths they choose. The richness of organic chemistry lends itself to 
solutions for our time, from the fields of health care, to energy, sustainability, and the environment. 
After all, it’s organic chemistry!

Guided by these goals, and by wanting to make our book even more accessible to students 
than it has ever been before, we have brought many changes to this edition.

New to tHIs edItIon
With this edition we bring Scott Snyder on board as a co-author. We’re very excited to have Scott 
join our team. Scott brings a rich resource of new perspectives to the book, particularly in the arena 
of complex molecule synthesis. Scott has infused new examples and applications of exciting chem-
istry that help achieve our goals. In addition to adding his perspectives to the presentation of core 
chemistry throughout the book, Scott’s work is manifest in most of this edition’s chapter openers 
and in all of the chapter closers, couched in a new feature called “Why do these topics matter?”.

“Why do these topics matter?” is a new feature that bookends each chapter with a teaser in 
the opener and a captivating example of organic chemistry in the closer. The chapter opener seeks 
to whet the student’s appetite both for the core chemistry in that chapter as well as a prize that 
comes at the end of the chapter in the form of a “Why do these topics matter?” vignette. These 
new closers consist of fascinating nuggets of organic chemistry that stem from research relating to 
medical, environmental, and other aspects of organic chemistry in the world around us, as well as 
the history of the science. They show the rich relevance of what students have learned to applica-
tions that have direct bearing on our lives and wellbeing. For example, in Chapter 6, the opener 
talks about the some of the benefits and drawbacks of making substitutions in a recipe, and then 
compares such changes to the nucleophilic displacement reactions that similarly allow chemists 
to change molecules and their properties. The closer then shows how exactly such reactivity has 
enabled scientists to convert simple table sugar into the artificial sweetener Splenda which is 600 
times as sweet, but has no calories! 

Laying the foundation earlier Certain tools are absolutely key to success in organic 
chemistry. Among them is the ability to draw structural formulas quickly and correctly. In this 
edition, we help students learn these skills even sooner than ever before by moving coverage of 
structural formulas and the use curved arrows earlier in the text (Section 3.2). We have woven 
together instruction about Lewis structures, covalent bonds, and dash structural formulas, so 
that students build their skills in these areas as a coherent unit, using organic examples that 
include alkanes, alkenes, alkynes, and alkyl halides. One could say that it’s a “use organic to 
teach organic” approach. 

PREFACE[ [
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Getting to the heart of the matter quicker Acid-base chemistry, and electrophiles and 
nucleophiles are at the heart of organic chemistry. Students cannot master the subject if they do 
not have a firm and early grasp of these topics. In this edition, we cut to the chase with these 
topics earlier in Chapter 3 than ever before, providing a streamlined and highly efficient route to 
student mastery of these critical concepts. 

Improving a core area: substitution reactions All organic instructors know how 
important it is for their students to have a solid understanding of substitution reactions. This is 
one reason our text has proven its lasting value. In this edition we have even further enhanced 
the presentation of substitution reactions in several ways, including a revised introduction of SN1 
reactions (Section 6.10) through the classic hydrolysis experiments of Hughes, and a newly orga-
nized presentation of solvent effects on the rate of substitution reactions. 

Striking a strong balance of synthetic methods Students need to learn methods of 
organic synthesis that are useful, as environmentally friendly as possible, and that are placed in the 
best overall contextual framework. In this edition we incorporate the Swern oxidation (Section 12.4), 
long held as a useful oxidation method and one that provides a less toxic alternative to chromate 
 oxidations in some cases. We also restore coverage of the Wolff-Kishner reduction (Section 16.8C) 
and the Baeyer-Villiger oxidation (Section 16.12), two methods whose importance has been proven 
by the test of time. The chemistry of radical reactions has also been refocused and streamlined by 
reducing thermochemistry content and by centralizing the coverage of allylic and benzylic radical 
substitutions (including NBS reactions) in one chapter (Sections 10.8 and 10.9), instead of distribut-
ing it between two, as before. The addition of sulfuric acid to alkenes and the Kolbe reaction have 
been deleted from the text, since these have little practical use in the laboratory. Toward the inclusion 
of modern, though mechanistically complex, methods of organic synthesis, we introduce catalytic 
oxidation methods (e.g., Sharpless and others) in special boxes, and provide coverage of transition 
metal organometallic reactions (Heck, Suzuki, and others) in Special Topic G.

239

Not all substitutions are a good thing; for instance, we wouldn’t want to accidentally use salt in place of the 

 needed amount of sugar in a batch of chocolate chip cookies. But with some substitutions, we get something even  better. In 

organic chemistry that is often the case, since nucleophilic substitution reactions (which we will learn about in this  chapter) 

allow the conversion of functional groups within a given molecule into entirely different functional groups, leading to new 

compounds with distinct properties. Moreover, nature utilizes a number of specific substitution reactions that are required 

for life.

IN THIS CHAPTER WE WILL CONSIDER:

what groups can be replaced (i.e., substituted) or eliminated

the various mechanisms by which such processes occur

the conditions that can promote such reactions

[ WHY DO THESE TOPICS MATTER? ] At the end of the chapter, we will show an example where just a few 

 substitution reactions can convert table sugar into a sweetener that has no calories—a sugar substitute that is not salty, 

but is in fact 600 times sweeter than sugar itself!

NUCLEOPHILIC SUBSTITUTION AND 
 ELIMINATION REACTIONS OF ALKYL HALIDES

Ionic Reactions

C H A P T E R

6

photo credit: (sugar bowl) Sylvie Shirazi Photography/Getty Images (salt pouring) Tom Grill/Getty Images (sugar pouring) Tom Grill/Getty Images

As we shall see in more detail in Chapter 24, simple  carbohydrates, or monosaccharides, can exist in the form of a six-
membered ring system with a chair conformation. The name carbohydrate derives from “hydrated carbon” since most carbon 
atoms have an H and OH attached. In the examples below, the structural differences of the monosaccharides glucose, man-
nose, and galactose are based on the change of one or more chirality centers through what we could formally consider to be 
an inversion reaction. As such, all of these carbohydrates are diastereomers of each other. Based on what you already know 
about torsional strain from Chapter 4, it should come as no surprise that D-glucose is the most common monosaccharide: 
D-glucose has the least strain because all of its substituents are in equatorial positions. All other six-carbon sugars have at 
least one axial group, and thus possess some 1,3-diaxial strain. Standard table sugar, or sucrose, is a disaccharide, since it 
combines a molecule of D-glucose with the slightly less common carbohydrate called D-fructose.

[ WHY Do These Topics Matter?
SUBSTITUTING THE CALORIES OF TABLE SUGAR

All carbohydrates taste sweet, though not equally so. D-Fructose, for example, tastes approximately 1.5 times sweeter 
than the same amount of simple table sugar, while D-glucose is only about 0.75 times as sweet. Irrespective of their individual 
degrees of sweetness, however, it is the fact that they are all sweet that lets us perceive their presence in foods whether they are 
found naturally or have been added (often from corn syrup or cane sugar) to create a more unique flavor profile. Either way, their 

D-glucose D-mannose SucroseD-galactose

O

OH

OH

OHHO
HO

HO
HO O

OH
OH

OH HO

O

OH

OH

OH

OH HO
HO O

OH

HO
O

O

OH OH

OH OH

Why Do These TopiCs maTTer? 
New opening vignettes prepare the students and 
foreshadow the relevance of chapter content, 
asking the question “why do these topics matter? 
closing vignettes answer the question by relating 
real world or historical aspects of organic  
chemistry.
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Maintaining an eye for clarity With every edition we improve the presentation of topics, 
reactions, and diagrams where the opportunity arises. In this edition some examples include 
improved discussion and diagrams regarding endo and exo Diels-Alder transition states, the effect 
of diene stereochemistry in Diels-Alder reactions (Section 13.10B), and improved mechanism 
depictions for aromatic sulfonation and thionyl chloride substitution. 

Resonating with topics in spectroscopy The authors have incorporated new figures 
to depict shielding and deshielding of alkenyl and alkynyl hydrogens by magnetic anisotropy, 
and clarified the discussion of shielding and deshielding in NMR chemical shifts (no longer 
invoking the terms upfield and downfield). The discussion of chlorine and bromine isotopic 
signatures in mass spectra has been enhanced, and presentation of mass spectrometer designs 
has been refocused. 

Showing how things work A mechanistic understanding of organic chemistry is key to 
student success in organic chemistry. Mechanisms have always been central to the book, and in 
this edition the authors have added a mechanistic framework for the Swern and chromate alcohol 
oxidations (Section 12.4) by presenting elimination of the carbinol hydrogen and a leaving group 
from oxygen as the common theme. 

trAdItIonAl PedAGoGIcAl strenGtHs
Solved Problems Knowing “where to begin” to solve organic chemistry problems is one of 
the greatest challenges faced by today’s students. By modeling problem solving strategies, students 
begin to understand the patterns inherent in organic chemistry and learn to apply that knowl-
edge to new situations. In this edition we have added even more Solved Problems. Now over 165 
Solved Problems guide students in their strategies for problem solving. Solved Problems are usu-
ally paired with a related Practice Problem.

Practice Problems Students need ample opportunities to practice and apply their new found 
strategies for solving organic chemistry problems. We’ve added to our rich array of in-text Practice 
Problems to provide students with even more opportunities to check their progress as they study. 
If they can work the practice problem, they should move on. If not, they should review the 
 preceding presentation.

Identify the electrophile and the nucleophile in the following reaction, and add curved arrows to indicate the flow of 
electrons for the bond-forming and  bond-breaking steps.

OO

C N
HH

N

+

STRATEGY AND ANSWER: The aldehyde carbon is electrophilic due to the electronegativity of the carbonyl oxygen. 
The cyanide anion acts as a Lewis base and is the nucleophile, donating an electron pair to the carbonyl carbon, and caus-
ing an electron pair to shift to the oxygen so that no atom has more than an octet of electrons.

H

O

N

+
H

O

C N

SOLVED PROBLEM 3.3

PRACTICE PROBLEM 3.4 Use the curved-arrow notation to write the reaction that would take place between 
dimethylamine (CH3)2NH and boron tri�uoride. Identify the Lewis acid, Lewis base, 
nucleophile, and electrophile and assign appropriate formal charges.

solVeD proBlems
model problem solving 
strategies. 

praCTiCe  
proBlems provides 
opportunities to check 
progress.
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End-of-Chapter Problems As athletes and musicians know, practice makes perfect. The 
same is true with organic chemistry. The End of Chapter problems, categorized by topic, provide 
essential practice for students and help them build mastery of both concepts and skills pre-
sented throughout the chapter. Many of the End of Chapter problems are cast in a visual format 
using structures, equations, and schemes. In addition, we still provide Challenge Problems and 
Learning Group Problems to address myriad teaching goals and styles. Learning Group Problems 
engage students in synthesizing  information and  concepts from throughout a chapter.   They can 
be used to facilitate collaborative learning in small groups, and can serve as a culminating activity 
that demonstrates student mastery over an integrated set of principles.  Supplementary material 
provided to instructors includes suggestions about how to orchestrate the use of learning groups.

A Mechanism for the Reaction Understanding mechanisms and the ability to recognize pat-
terns among them is a key component in determining student success in organic chemistry. We provide 
A Mechanism for the Reaction boxes that show step-by-step details about how reactions take place so 
that students have the tools to understand rather than memorize organic reactions. 

Reaction

H3C H3CC

CH3

Cl

CH3

2 H2O H3OC

CH3

OH

CH3

Cl

Mechanism

Step 1

CH3 CH3C

CH3

Cl
slow

H2O

CH3

C

CH3

CH3

Cl

Aided by the polar solvent, 
a chlorine departs with the 
electron pair that bonded 

it to the carbon.

This slow step produces 
the 3° carbocation interme-

diate and a chloride ion. 
Although not shown here, 
the ions are solvated (and 

stabilized) by water 
molecules.

Step 2

CH3 O H

H

fast
CH3

CH3

CH3

C O H

H

C

CH3

CH3

A water molecule acting 
as a Lewis base donates 

an electron pair to the 
carbocation (a Lewis acid). 

This gives the cationic 
carbon eight electrons.

The product is a 
tert-butyloxonium ion 

(or protonated 
tert-butyl alcohol).

Step 3

CH3

CH3

CH3

C O H

H

O H

H

CH3

CH3

CH3

C O

H

O H

H

H
fast

A water molecule acting 
as a Brønsted base 

accepts a proton from 
the tert-butyloxonium 

ion.

The products are tert-butyl 
alcohol and a hydronium 

ion.

A MECHANISM FOR THE REACTION[ [Mechanism for the SN1 Reaction

Transition
state 1

Step 1 ∆G‡
(1) is much

larger than
∆G‡

(2) or ∆G‡
(3), 

hence this is
the slowest step

∆G‡
(1)

Reaction coordinate

F
re

e 
en

er
g

y

Transition
state 2

Step 2

∆G‡
(2)

Reaction coordinate

F
re

e 
en

er
g

y

Transition
state 3

Step 3

Reaction coordinate

∆G‡
(3)

∆G°F
re

e 
en

er
g

y

a meChanism for The 
reaCTion stepped out 
reactions with just the right 
amount of detail provides the 
tools for students to under-
stand rather than memorize 
reaction mechanisms

7.44 Provide a mechanistic explanation for each of the following reactions:

(a) 
OH

(major product)

acid (cat.)
¢

(b) 

OH

(major product)

acid (cat.)
¢

(c) I

(major product)

AgNO3

EtOH

(d) 

Ph
Ph

Br

H

H PhPh

(Z only)

EtONa

EtOH, ¢

INDEX OF HYDROGEN DEFICIENCY

7.45 What is the index of hydrogen deficiency (IHD) (degree of unsaturation) for each of the following compounds?

C6H8Br4(a) (b)

O

7.46 Caryophyllene, a compound found in oil of cloves, has the molecular formula C15H24 and has no triple bonds. Reaction of caryo-
phyllene with an excess of hydrogen in the presence of a platinum catalyst produces a compound with the formula C15H28. How many 
(a) double bonds and (b) rings does a molecule of caryophyllene have?

enD-of-ChapTer  
proBlems are grouped and 
labeled by topic. students and 
instructors can more easily select 
problems for specifc purposes.

LEARNING GROUP PROBLEMS
1. (a) Synthesize (3S,4R)-3,4-dibromo-1-cyclohexylpentane (and its enantiomer, since a racemic mixture will be formed) from ethyne, 
1-chloro-2-cyclohexylethane, bromomethane, and any other reagents necessary. (Use ethyne, 1-chloro-2-cyclohexylethane, and bromo-
methane as the sole sources of carbon atoms.) Start the problem by showing a retrosynthetic analysis. In the process, decide which atoms 
of the target molecule will come from which atoms of the starting reagents. Also, bear in mind how the stereospecificity of the reactions 
you employ can be used to achieve the required stereochemical form of the final product.

(b) Explain why a racemic mixture of products results from this synthesis.

(c) How could the synthesis be modified to produce a racemic mixture of the (3R,4R) and (3S,4S) isomers instead?

2. Write a reasonable and detailed mechanism for the following transformation:

heat

concd H2SO4

OH

H2O
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Key Ideas as Bullet Points The amount of content covered in organic chemistry can be over-
whelming to students. To help students focus on the most essential topics, key ideas are emphasized 
as bullet points in every section. In preparing bullet points, we have distilled appropriate concepts 
into simple declarative statements that convey core ideas accurately and clearly. No topic is ever 
presented as a bullet point if its integrity would be diminished by oversimplification, however. 

“How to” Sections Students need to master important skills to support their conceptual 
 learning. “How to” Sections throughout the text give step-by-step instructions to guide students 
in performing important tasks, such as using curved arrows, drawing chair conformations, 
 planning a Grignard synthesis, determining formal charges, writing Lewis structures, and using 
13C and 1H NMR spectra to determine structure.

The Chemistry of . . . . Virtually every instructor has the goal of showing students how 
organic chemistry relates to their field of study and to their everyday life experience. The authors 
assist their colleagues in this goal by providing boxes titled “The Chemistry of. . .” that provide 
interesting and targeted examples that engage the student with chapter content.

Summary and Review Tools At the end of each chapter, Summary and Review Tools provide 
visually oriented roadmaps and frameworks that students can use to help organize and assimilate 
concepts as they study and review chapter content. Intended to accommodate diverse learn-
ing styles, these include Synthetic Connections, Concept Maps, Thematic Mechanism Review 
Summaries, and the detailed Mechanism for the Reaction boxes already mentioned. We also 
provide Helpful Hints and richly annotated illustrations throughout the text.

INCREASED ACIDITY
(Section 3.7)

Greater s orbital character in carbon hydridization

Lower position within a group (column) of the
periodic table (bond strength effect)

Position further to the right within a given row of
the periodic table (electronegativity effect)

DECREASED BASICITY
(Section 3.7)

Curved-arrow notation
(Section 3.2)

Resonance

Charge delocalization

With respect to the conjugate base

For the atom bearing a potentially acidic hydrogen

An inductive electron-withdrawing
group or electronegative atom

is used to show

often involve

leads to

leads to

can be

are a
subcategory

of

are a
subcategory

of
are are

are

can be

Reaction mechanisms
(Section 3.2)Acids

Brønsted–Lowry acids
(Section 3.1A)

Lewis acids
(Section 3.3)

contain/have

are associated with 

Small or negative pKa
values and large Ka values

(Section 3.5)

Proton
donors

Strong acids

have

leads to leads to

Weak conjugate bases

Electron pair
acceptors

Electrophiles
(Section 3.4A)

Carbocations

can be

areare

can be are

can be

Bases

Brønsted–Lowry bases
(Section 3.1A)

Lewis bases
(Section 3.3)

contain/have

are associated with 

Large and positive pKa
values and small Ka values

(Section 3.5)

Proton
acceptors

Strong bases

have

Weak conjugate acids

Electron pair
donors

Nucleophiles
(Section 3.4A)

Carbanions

[C O N C E P T  M A P ]

CH2R1 R2 CH CHR1 R2

X2

C C

H X

X H

R1

2

2

2

R2

C C

LG

CH

Alkyl halides
and alcohols

Alkenes

(Z)-Alkene

H2

2

3 2

NH4

H2

H2

H2

=

Vicinal dihalide

C C

H C

H C

R1 R2

C C

H O

H

R1 R2

5

Geminal
dichloride

Aldehyde or
ketone

Alkynide anion Internal alkyne AlkaneTerminal alkyne

R2—–LG
CH2 CH2R1 R2C CR1 H C C

–
R1 C CR1 R2

R1 R2

HH

C C
(E)-Alkene

R1

R2

H

H

[S U M M A R Y  A N D  R E V I E W  T O O L S ]
Synthetic Connections of Alkynes, Alkenes, Alkyl Halides, and Alcohols

involves

followed
byis approached

logically by

of alkanes can be accomplished by

Retrosynthetic analysis
(Section 7.15B)

Step-by-step backward
disconnection from the

target molecule to
progressively simpler

precursors

Organic synthesis

Alkylation of alkynide anions
RC   C:–  R’—X       RC   CR'

(Section 7.11)

Reduction of alkenes or alkynes:

–C   C– –C–C–

–C–C–

H   H

C C
– –

– –

or or

– –
– –

H   H

H   H

– –
– –

(Sections 7.13,7.14)

H2 with Pt or Ni or
Pd cat., pressure

[C O N C E P T  M A P ]

sUmmary anD reVieW Tools Visually 
oriented study tools accommodate diverse 
learning styles.
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coVerAGe
Throughout the book, we have streamlined or reduced content to match the modern practice of 
organic chemistry, and we have provided new coverage of current reactions, while maintaining 
our commitment to an appropriate level and breadth of coverage.

•   Chapters on carbonyl chemistry that are organized to emphasize mechanistic themes of nucleo-
philic addition, acyl substitution, and reactivity at the a-carbon.

•   Presentation of the important modern synthetic methods of the Grubbs, Heck, Sonogashira, 
Stille, and Suzuki transition metal catalyzed carbon-carbon bond-forming reactions in a practi-
cal and student-oriented way that includes review problems and mechanistic context (Special 
Topic G).

orGAnIzAtIon—An emphasis on the Fundamentals

So much of organic chemistry makes sense and can be generalized if students master and apply 
a few fundamental concepts. Therein lays the beauty of organic chemistry. If students learn the 
essential principles, they will see that memorization is not needed to succeed.

Most important is for students to have a solid understanding of structure—of hybridiza-
tion and geometry, steric hindrance, electronegativity, polarity, formal charges, and resonance 
—so that they can make intuitive sense of mechanisms. It is with these topics that we begin 
in Chapter 1. In Chapter 2 we introduce the families of functional groups—so that students 
have a platform on which to apply these concepts. We also introduce intermolecular forces, 
and infrared (IR) spectroscopy—a key tool for identifying functional groups. Throughout the 
book we include calculated models of molecular orbitals, electron density surfaces, and maps of 
electrostatic potential. These models enhance students’ appreciation for the role of structure in 
properties and reactivity. 

We begin our study of mechanisms in the context of acid-base chemistry in Chapter 
3. Acid-base reactions are fundamental to organic reactions, and they lend themselves to 
introducing several important topics that students need early in the course: (1) curved arrow 
notation for illustrating mechanisms, (2) the relationship between free-energy changes and 
equilibrium constants, and (3) the importance of inductive and resonance effects and of sol-
vent effects.

In Chapter 3 we present the first of many “A Mechanism for the Reaction” boxes, using an 
example that embodies both Brønsted-Lowry and Lewis acid-base principles. All throughout the 
book, we use boxes like these to show the details of key reaction mechanisms. All of the Mechanism 
for the Reaction boxes are listed in the Table of Contents so that students can easily refer to them 
when desired.

A central theme of our approach is to emphasize the relationship between structure and 
reactivity. This is why we choose an organization that combines the most useful features of a func-
tional group approach with one based on reaction mechanisms. Our philosophy is to emphasize 
mechanisms and fundamental principles, while giving students the anchor points of functional 
groups to apply their mechanistic knowledge and intuition. The structural aspects of our approach 
show students what organic chemistry is. Mechanistic aspects of our approach show students how 
it works. And wherever an opportunity arises, we show them what it does in living systems and the 
physical world around us.

In summary, our writing reflects the commitment we have as teachers to do the best we can to 
help students learn organic chemistry and to see how they can apply their knowledge to improve 
our world. The enduring features of our book have proven over the years to help students learn 
organic chemistry. The changes in our 11th edition make organic chemistry even more accessible 
and relevant. Students who use the in-text learning aids, work the problems, and take advantage of 
the resources and practice available in WileyPLUS (our online teaching and learning solution) will 
be assured of success in organic chemistry.
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WilEyPlUS For orGAnIc cHemIstry—
A Powerful teaching and learning solution
WileyPLUS is an innovative, research-based online environment for effective teaching and 
 learning. WileyPLUS builds student confidence because it takes the guesswork out of studying by 
providing students with a clear roadmap: what to do, how to do it, if they did it right. Students 
will take more initiative so instructors will have greater impact on their achievement in the 
 classroom and beyond.

Breadth of Depth of Assessment: Four unique silos of assessment are available to instruc-
tors for creating online homework and quizzes and are designed to enable and support problem-
solving skill development and conceptual understanding 

teAcHInG And leArnInG resoUrces[ [

ReacTion exploReR

in cHapTeR/eoc aSSeSSmenT

concepT maSTeRy

TeST Bank

meaningFuL Practice OF mechanisms anD synthesis 
PrOBLems (a DataBase OF Over 100,000 questiOns)

90-100% OF review PrOBLems anD enD OF chaPter 
(eOc) questiOns are cODeD FOr OnLine assessment

Pre-Buit cOncePt mastery assignments ( FrOm  
DataBase OF Over 25,000 questiOns)

rich testBank cOnsisting OF Over 3,000 questiOns

W i l E y P l U S  A s s e s s m e n t         FOr Organic chemistry

meChanism explorer:  
valuable practice with  
reactions and mechanisms

synThesis explorer:  
meaningful practice with single 
and multi-step synthesis

Reaction Explorer Students ability to understand mechanisms and predict syntheis reactions 
greatly impacts their level of success in the course. Reaction Explorer is an interactive system 
for learning and practicing reactions, syntheses and mechanisms in organic chemistry with 
advanced support for the automatic generation of random problems and curved arrow  mechanism 
diagrams.
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End of Chapter Problems. Approximately 90% of the end of chapter problems are included 
in WileyPLUS. Many of the problems are algorithmic and feature structure drawing/assessment 
functionality using MarvinSketch, with immediate answer feedback and video question assis-
tance. A subset of these end of chapter problems is linked to Guided Online  tutorials which 
are stepped-out problem-solving tutorials that walk the student through the problem, offering 
individualized feedback at each step.

Prebuilt concept mastery assignments Students must continously practice and work 
organic chemistry in order to master the concepts and skills presented in the course. Prebuilt 
concept mastery assignments offer students ample opportunities for practice, covering all the 
major topics and concepts within an organic chemistry course. Each assignment is organized by 
topic and features feedback for incorrect answers. These assignments are drawn from a unique 
database of over 25,000 questions, over half of which require students to draw a structure using 
MarvinSketch.

preBUilT ConCepT  
masTery assiGnmenTs 

wHAt do stUdents receIVe  
wItH WilEyPlUS?

• The complete digital textbook, saving students up to 60% off the cost of a printed text.
• Question assistance, including links to relevant sections in the online digital textbook.
• Immediate feedback and proof of progress, 24/7.
•  Integrated, multi-media resources that address students’ unique learning styles, levels of profi-

ciency, and levels of preparation by providing multiple study paths and encourage more active 
learning.

WilEyPlUS stUdent resoUrces
New Chapter 0 General Chemistry Refresher. To ensure students have mastered the 
necessary prerequisite content from general chemistry, and to eliminate the burden on instructors 
to review this material in lecture, WileyPLUS now includes a complete chapter of core general 
chemistry topics with corresponding assignments. Chapter 0 is available to students and can be 
assigned in WileyPLUS to ensure and gauge understanding of the core topics required to succeed 
in organic chemistry. 

New Prelecture Assignments. Preloaded and ready to use, these assignments have been 
carefully designed to assess students prior to their coming to class. Instructors can assign these 
pre-created quizzes to gauge student preparedness prior to lecture and tailor class time based on 
the scores and participation of their students.
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Video Mini-Lectures, Offce Hour Videos, and Solved Problem Videos In each 
chapter, several types of video assistance are included to help students with conceptual under-
standing and problem solving strategies. The video mini-lectures focus on challenging concepts; 
the office hours videos take these concepts and apply them to example problems, emulating the 
experience that a student would get if she or he were to attend office hours and ask for assistance 
in working a problem. The Solved Problem videos demonstrate good problems solving strategies 
for the student by walking through in text solved problems using audio and a whiteboard. The 
goal is to illustrate good problem solving strategies.

Skill Building Exercises are animated exercises with instant feedback to reinforce the key 
skills required to succeed in organic chemistry.

3D Molecular Visualizations use the latest visualization technologies to help students 
visualize concepts with audio. Instructors can assign quizzes based on these visualizations in  
WileyPLUS.

What do instructors receive 
With WileyPlUS?

• Reliable resources that reinforce course goals inside and outside of the classroom.
•  The ability to easily identify students who are falling behind by tracking their progress and 

offering assistance easily, even before they come to office hours. WileyPLUS simplifies and 
automates such tasks as student performance assessment, creating assignments, scoring student 
work, keeping grades, and more.

•  Media-rich course materials and assessment content that allow you to customize your class-
room presentation with a wealth of resources and functionality from PowerPoint slides to a 
database of rich visuals. You can even add your own materials to your WileyPLUS course.

additional instructor resources
All Instructor Resources are available within WileyPLUS or they can be accessed by contacting 
your local Wiley Sales Representative. Many of the assets are located on the book companion site, 
www.wiley.com/college/solomons

Test Bank Authored by Robert Rossi, of Gloucester County College, Jeffrey Allison, of Austin 
Community College, and Gloria Silva, of Carnegie Mellon University, the Test Bank for this edi-
tion has been completely revised and updated to include over 3,000 short answer, multiple choice, 
and essay/drawing questions. The Test Bank files, along with a software tool for managing and 
creating exams, are available online.

www.wiley.com/college/solomons
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PowerPoint Lecture Slides PowerPoint Lecture Slides have been prepared by Professor 
William Tam, of the University of Guelph, Dr. Phillis Chang, and Gary Porter, of Bergen 
Community College. The PowerPoint slides include additional examples, illustrations, and 
presentations that help reinforce and test students’ grasp of organic chemistry concepts. An 
additional set of PowerPoint slides features the illustrations, figures, and tables from the text. All 
PowerPoint slide presentations are customizable to fit your course.

Personal Response System (“Clicker”) Questions A bank of questions is available for 
anyone using personal response system technology in their classroom. The clicker questions are 
also available in a separate set of PowerPoint slides.

Digital Image Library Images from the text are available online in JPEG format. Instructors 
may use these images to customize their presentations and to provide additional visual support 
for quizzes and exams.

AddItIonAl stUdent resoUrces
Study Guide and Solutions Manual (978-1-118-14790-0)
The Study Guide and Solutions Manual for Organic Chemistry, Eleventh Edition, authored by Jon 
Antilla, of the University of South Florida, Robert Johnson, of Xavier University, Craig Fryhle, 
Graham Solomons, and Scott Snyder contains explained solutions to all of the problems in the 
text. The Study Guide also contains:

•  An introductory essay “Solving the Puzzle—or—Structure is Everything” that serves as a bridge 
from general to organic chemistry

• Summary tables of reactions by mechanistic type and functional group
• A review quiz for each chapter
• A set of hands-on molecular model exercises
•  Solutions to the problems in the Special Topics sections (many of the Special Topics are only 

available within WileyPLUS)

molecUlAr VIsIons™ model KIts 
We believe that the tactile and visual experience of manipulating physical models is key to 
 students’ understanding that organic molecules have shape and occupy space. To support our 
pedagogy, we have arranged with the Darling Company to bundle a special ensemble of Molecular 
Visions™ model kits with our book (for those who choose that option). We use Helpful Hint icons 
and margin notes to frequently encourage students to use hand-held models to investigate the 
three-dimensional shape of molecules we are discussing in the book.

cUstomIzAtIon And FlexIble oPtIons  
to meet yoUr needs
Wiley Custom Select allows you to create a textbook with precisely the content you want, in a 
simple, three-step online process that brings your students a cost-efficient alternative to a tradi-
tional textbook. Select from an extensive collection of content at http://customselect.wiley.com, 
upload your own materials as well, and select from multiple delivery formats—full color or black 
and white print with a variety of binding options, or eBook. Preview the full text online, get an 
instant price quote, and submit your order; we’ll take it from there.

WileyFlex offers content in flexible and cost-saving options to students. Our goal is to deliver 
our learning materials to our customers in the formats that work best for them, whether it’s a 
traditional text, eTextbook, WileyPLUS, loose-leaf binder editions, or customized content through 
Wiley Custom Select.

http://customselect.wiley.com
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Contrary to what you may have heard, organic chemistry does not 
have to be a difficult course. It will be a rigorous course, and it will 
offer a challenge. But you will learn more in it than in almost any 
course you will take—and what you learn will have a special rel-
evance to life and the world around you. However, because organic 
chemistry can be approached in a logical and systematic way, you 
will find that with the right study habits, mastering organic chemis-
try can be a deeply satisfying experience. Here, then, are some sug-
gestions about how to study:

1. Keep up with your work from day to day—never 
let yourself get behind. Organic chemistry is a course in 
which one idea almost always builds on another that has gone 
before. It is essential, therefore, that you keep up with, or bet-
ter yet, be a little ahead of your instructor. Ideally, you should 
try to stay one day ahead of your instructor’s lectures in your 
own class preparations. The lecture, then, will be much more 
helpful because you will already have some understanding of 
the assigned material. Your time in class will clarify and expand 
ideas that are already familiar ones.

2. Study material in small units, and be sure that 
you understand each new section before you go 
on to the next. Again, because of the cumulative nature of 
organic chemistry, your studying will be much more effective 
if you take each new idea as it comes and try to understand it 
completely before you move on to the next concept.

3. Work all of the in-chapter and assigned prob-
lems. One way to check your progress is to work each of the 
in-chapter problems when you come to it. These problems have 
been written just for this purpose and are designed to help you 
decide whether or not you understand the material that has 
just been explained. You should also carefully study the Solved 
Problems. If you understand a Solved Problem and can work 
the related in-chapter problem, then you should go on; if you 
cannot, then you should go back and study the preceding mate-
rial again. Work all of the problems assigned by your instructor 
from the end of the chapter, as well. Do all of your problems in 
a notebook and bring this book with you when you go to see 
your instructor for extra help.

4. Write when you study. Write the reactions, mechanisms, 
structures, and so on, over and over again. Organic chemistry 
is best assimilated through the fingertips by writing, and not 
through the eyes by simply looking, or by highlighting mate-
rial in the text, or by referring to flash cards. There is a good 
reason for this. Organic structures, mechanisms, and reactions 

are complex. If you simply examine them, you may think you 
understand them thoroughly, but that will be a misperception. 
The reaction mechanism may make sense to you in a certain 
way, but you need a deeper understanding than this. You need 
to know the material so thoroughly that you can explain it to 
someone else. This level of understanding comes to most of us 
(those of us without photographic memories) through writing. 
Only by writing the reaction mechanisms do we pay sufficient 
attention to their details, such as which atoms are connected 
to which atoms, which bonds break in a reaction and which 
bonds form, and the three-dimensional aspects of the struc-
tures. When we write reactions and mechanisms, connections 
are made in our brains that provide the long-term memory 
needed for success in organic chemistry. We virtually guarantee 
that your grade in the course will be directly proportional to the 
number of pages of paper that your fill with your own writing 
in studying during the term.

5. Learn by teaching and explaining. Study with your 
student peers and practice explaining concepts and mechanisms 
to each other. Use the Learning Group Problems and other 
exercises your instructor may assign as vehicles for teaching and 
learning interactively with your peers. 

6. Use the answers to the problems in the Study 
Guide in the proper way. Refer to the answers only in 
two circumstances: (1) When you have finished a problem, 
use the Study Guide to check your answer. (2) When, after 
making a real effort to solve the problem, you find that you 
are completely stuck, then look at the answer for a clue and 
go back to work out the problem on your own. The value of 
a problem is in solving it. If you simply read the problem and 
look up the answer, you will deprive yourself of an important 
way to learn.

7. Use molecular models when you study. Because 
of the three-dimensional nature of most organic molecules, 
molecular models can be an invaluable aid to your understand-
ing of them. When you need to see the three-dimensional 
aspect of a particular topic, use the Molecular Visions™ model 
set that may have been packaged with your textbook, or buy a 
set of models separately. An appendix to the Study Guide that 
accompanies this text provides a set of highly useful molecular 
model exercises.

8. Make use of the rich online teaching resources 
in wileyPLUS and do any online exercises that may be 
assigned by your instructor. 

TO THE STUDENT [[



Organic chemistry plays a role in all aspects of our lives, from the clothing we wear, to the pixels of our televi-

sion and computer screens, to preservatives in food, to the inks that color the pages of this book. If you take the time to 

understand organic chemistry, to learn its overall logic, then you will truly have the power to change society. Indeed, organic 

chemistry provides the power to synthesize new drugs, to engineer molecules that can make computer processors run 

more quickly, to understand why grilled meat can cause cancer and how its effects can be combated, and to design ways 

to knock the calories out of sugar while still making food taste deliciously sweet. It can explain biochemical processes like 

aging, neural functioning, and cardiac arrest, and show how we can prolong and improve life. It can do almost anything.

In thIs chapter we wIll consIder:

•	 what kinds of atoms make up organic molecules

•	 the principles that determine how the atoms in organic molecules are bound together

•	 how best to depict organic molecules

[ whY do these topIcs Matter? ] At the end of the chapter, we will see how some of the unique organic struc-

tures that nature has woven together possess amazing properties that we can harness to aid human health.

Bonding and Molecular Structure

The Basics

c h a p t e r

1

1

photo credits: clothing: © Sandra van der Steen/iStockphoto; inks: © Andrey Kuzman/iStockphoto; drugs: © cogal/iStockphoto
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1.1  life and the cheMiStry of carBon 
coMpoundS—We are StarduSt

Organic chemistry is the chemistry of compounds that contain the element carbon. 
If a compound does not contain the element carbon, it is said to be inorganic.

Look for a moment at the periodic table inside the front cover of this book. More 
than a hundred elements are listed there. The question that comes to mind is this: why 
should an entire field of chemistry be based on the chemistry of compounds that contain 
this one element, carbon? There are several reasons, the primary one being this: carbon 
compounds are central to the structure of living organisms and therefore to the exis-
tence of life on Earth. We exist because of carbon compounds.

What is it about carbon that makes it the element that nature has chosen for living 
organisms? There are two important reasons: carbon atoms can form strong bonds to 
other carbon atoms to form rings and chains of carbon atoms, and carbon atoms can also 
form strong bonds to elements such as hydrogen, nitrogen, oxygen, and sulfur. Because 
of these bond-forming properties, carbon can be the basis for the huge diversity of com-
pounds necessary for the emergence of living organisms.

From time to time, writers of science fiction have speculated about the possibility of 
life on other planets being based on the compounds of another element—for example, 
silicon, the element most like carbon. However, the bonds that silicon atoms form to each 
other are not nearly as strong as those formed by carbon, and therefore it is very unlikely 
that silicon could be the basis for anything equivalent to life as we know it.

1.1A What Is the Origin of the Element Carbon?
Through the efforts of physicists and cosmologists, we now understand much of how 
the elements came into being. The light elements hydrogen and helium were formed at 
the beginning, in the Big Bang. Lithium, beryllium, and boron, the next three elements, 
were formed shortly thereafter when the universe had cooled somewhat. All of the heavier 
elements were formed millions of years later in the interiors of stars through reactions in 
which the nuclei of lighter elements fuse to form heavier elements.

The energy of stars comes primarily from the fusion of hydrogen nuclei to produce 
helium nuclei. This nuclear reaction explains why stars shine. Eventually some stars begin 
to run out of hydrogen, collapse, and explode—they become supernovae. Supernovae 
explosions scatter heavy elements throughout space. Eventually, some of these heavy ele-
ments drawn by the force of gravity became part of the mass of planets like the Earth.

1.1B How Did Living Organisms Arise?
This question is one for which an adequate answer cannot be given now because there 
are many things about the emergence of life that we do not understand. However, we do 
know this. Organic compounds, some of considerable complexity, are detected in outer 
space, and meteorites containing organic compounds have rained down on Earth since it 
was formed. A meteorite that fell near Murchison, Victoria, Australia, in 1969 was found 
to contain over 90 different amino acids, 19 of which are found in living organisms on 
Earth. While this does not mean that life arose in outer space, it does suggest that events 
in outer space may have contributed to the emergence of life on Earth.

In 1924 Alexander Oparin, a biochemist at the Moscow State University,  postulated 
that life on Earth may have developed through the gradual evolution of carbon-based 
molecules in a “primordial soup” of the compounds that were thought to exist on a 
 prebiotic Earth: methane, hydrogen, water, and ammonia. This idea was tested by 
experiments carried out at the University of Chicago in 1952 by Stanley Miller and 
Harold Urey. They showed that amino acids and other complex organic compounds are 
synthesized when an electric spark (think of lightning) passes through a flask containing 
a mixture of these four compounds (think of the early atmosphere). Miller and Urey in 
their 1953 publication reported that five amino acids (essential constituents of proteins) 
were formed. In 2008, examination of archived solutions from Miller and Urey’s original 
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 1.2 AtomIc Structure 3

experiments have shown that 22 amino acids, rather than the 5 amino acids originally 
reported, were actually formed.

Similar experiments have shown that other precursors of biomolecules can also arise 
in this way—compounds such as ribose and adenine, two components of RNA. Some 
RNA molecules can not only store genetic information as DNA does, they can also act 
as catalysts, as enzymes do.

There is much to be discovered to explain exactly how the compounds in this soup 
became living organisms, but one thing seems certain. The carbon atoms that make up 
our bodies were formed in stars, so, in a sense, we are stardust.

1.1C Development of the Science of Organic Chemistry
The science of organic chemistry began to flower with the demise of a nineteenth century 
theory called vitalism. According to vitalism, organic compounds were only those that came 
from living organisms, and only living things could synthesize organic compounds through 
intervention of a vital force. Inorganic compounds were considered those compounds that 
came from nonliving sources. Friedrich Wöhler, however, discovered in 1828 that an organ-
ic compound called urea (a constituent of urine) could be made by evaporating an aqueous 
solution of the inorganic compound ammonium cyanate. With this discovery, the synthesis 
of an organic compound, began the evolution of organic chemistry as a scientific   discipline.

NH4
�NCO� C

H2N NH2

O

Ammonium cyanate Urea

heat

An RNA molecule

1.2 atoMic Structure
Before we begin our study of the compounds of carbon we need to review some basic but 
familiar ideas about the chemical elements and their structure.

● Te compounds we encounter in chemistry are made up of elements combined 
in diferent proportions.

● Elements are made up of atoms. An atom (Fig. 1.1) consists of a dense, positively 
charged nucleus containing protons and neutrons and a surrounding cloud of  electrons.

Each proton of the nucleus bears one positive charge; electrons bear one negative 
charge. Neutrons are electrically neutral; they bear no charge. Protons and neutrons have 

THE CHEmISTry Of... Natural Products

despite the demise of vitalism in science, the word “organic” is still used today by some people 
to mean “coming from living organisms” as in the terms “organic vitamins” and “organic fertiliz-
ers.” the commonly used term “organic food” means that the food was grown without the use of 
synthetic fertilizers and pesticides. an “organic vitamin” means to these people that the vitamin 
was isolated from a natural source and not synthesized by a chemist. While there are sound 
arguments to be made against using food contaminated with certain pesticides, while there may 
be environmental benefts to be obtained from organic farming, and while “natural” vitamins may 
contain benefcial substances not present in synthetic vitamins, it 
is impossible to argue that pure “natural” vitamin c, for example, 
is healthier than pure “synthetic” vitamin c, since the two sub-
stances are identical in all respects. in science today, the study 
of compounds from living organisms is called natural products 
chemistry. in the closer to this chapter we will consider more 
about why natural products chemistry is important.
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Figure 1.1 an atom is composed of a tiny nucleus contain-
ing protons and neutrons and a large surrounding volume 
containing electrons. the diameter of a typical atom is about 
10,000 times the diameter of its nucleus.
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nearly equal masses (approximately 1 atomic mass unit each) and are about 1800 times as 
heavy as electrons. Most of the mass of an atom, therefore, comes from the mass of the 
nucleus; the atomic mass contributed by the electrons is negligible. Most of the volume 
of an atom, however, comes from the electrons; the volume of an atom occupied by the 
electrons is about 10,000 times larger than that of the nucleus.

The elements commonly found in organic molecules are carbon, hydrogen, nitrogen, 
oxygen, phosphorus, and sulfur, as well as the halogens: fluorine, chlorine, bromine, and 
iodine.

Each element is distinguished by its atomic number (Z), a number equal to the   
number of protons in its nucleus. Because an atom is electrically neutral, the atomic 
number also equals the number of electrons surrounding the nucleus.

1.2A Isotopes
Before we leave the subject of atomic structure and the periodic table, we need to exam-
ine one other observation: the existence of atoms of the same element that have dif-
ferent masses.

For example, the element carbon has six protons in its nucleus giving it an atomic 
number of 6. Most carbon atoms also have six neutrons in their nuclei, and because each 
proton and each neutron contributes one atomic mass unit (1 amu) to the mass of the 
atom, carbon atoms of this kind have a mass number of 12 and are written as 12C.

● Although all the nuclei of all atoms of the same element will have the same 
number of protons, some atoms of the same element may have diferent masses 
because they have diferent numbers of neutrons. Such atoms are called isotopes.

For example, about 1% of the atoms of elemental carbon have nuclei containing 7 neu-
trons, and thus have a mass number of 13. Such atoms are written 13C. A tiny fraction of 
carbon atoms have 8 neutrons in their nucleus and a mass number of 14. Unlike atoms of 
carbon-12 and carbon-13, atoms of carbon-14 are radioactive. The 14C isotope is used in 
carbon dating. The three forms of carbon, 12C, 13C, and 14C, are isotopes of one another.

Most atoms of the element hydrogen have one proton in their nucleus and have 
no neutron. They have a mass number of 1 and are written 1H. A very small percentage 
(0.015%) of the hydrogen atoms that occur naturally, however, have one neutron in their 
nucleus. These atoms, called deuterium atoms, have a mass number of 2 and are written 
2H. An unstable (and radioactive) isotope of hydrogen, called tritium (3H), has two neu-
trons in its nucleus.

PracTice ProBlem 1.1 Tere are two stable isotopes of nitrogen, 14N and 15N. How many protons and neutrons 
does each isotope have?

•••

1.2B Valence Electrons
We discuss the electron configurations of atoms in more detail in Section 1.10. For the 
moment we need only to point out that the electrons that surround the nucleus exist in 
shells of increasing energy and at increasing distances from the nucleus. The most important 
shell, called the valence shell, is the outermost shell because the electrons of this shell are the 
ones that an atom uses in making chemical bonds with other atoms to form compounds.

● How do we know how many electrons an atom has in its valence shell? We look 
at the periodic table. Te number of electrons in the valence shell (called valence 
electrons) is equal to the group number of the atom. For example, carbon is in 
group IVA and carbon has four valence electrons; oxygen is in group VIA and 
oxygen has six valence electrons. Te halogens of group VIIA all have seven electrons.

PracTice ProBlem 1.2 How many valence electrons does each of the following atoms have?
(a) Na  (b) Cl  (c) Si  (d) B  (e) Ne  (f) N

•••
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The first explanations of the nature of chemical bonds were advanced by G. N. Lewis (of 
the University of California, Berkeley) and W. Kössel (of the University of Munich) in 
1916. Two major types of chemical bonds were proposed:

1. Ionic (or electrovalent) bonds are formed by the transfer of one or more electrons 
from one atom to another to create ions.

2. Covalent bonds result when atoms share electrons.

The central idea in their work on bonding is that atoms without the electronic con-
figuration of a noble gas generally react to produce such a configuration because these 
configurations are known to be highly stable. For all of the noble gases except helium, this 
means achieving an octet of electrons in the valence shell.

● Te valence shell is the outermost shell of electrons in an atom.
● Te tendency for an atom to achieve a confguration where its valence shell 

contains eight electrons is called the octet rule.

The concepts and explanations that arise from the original propositions of Lewis and 
Kössel are satisfactory for explanations of many of the problems we deal with in organic 
chemistry today. For this reason we shall review these two types of bonds in more modern 
terms.

1.3A Ionic Bonds
Atoms may gain or lose electrons and form charged particles called ions.

● An ionic bond is an attractive force between oppositely charged ions.

One source of such ions is a reaction between atoms of widely differing electronegativities 
(Table 1.1).

● Electronegativity is a measure of the ability of an atom to attract electrons.
● Electronegativity increases as we go across a horizontal row of the periodic table 

from left to right and it increases as we go up a vertical column (Table 1.1).

An example of the formation of an ionic bond is the reaction of lithium and fluorine 
atoms:

Li F Li F

–
+

+ +

Lithium, a typical metal, has a very low electronegativity; fluorine, a nonmetal, is the 
most electronegative element of all. The loss of an electron (a negatively charged species) 

1.3 cheMical BondS: the octet rule

Helpful Hint
terms and concepts that are funda-
mentally important to your learning 
organic chemistry are set in bold 
blue type. you should learn them as 
they are introduced. these terms 
are also defned in the glossary.

Helpful Hint
We will use electronegativity 
frequently as a tool for understand-
ing the properties and reactivity of 
organic molecules.
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by the lithium atom leaves a lithium cation (Li+); the gain of an electron by the fluorine 
atom gives a fluoride anion (F-).

● Ions form because atoms can achieve the electronic confguration of a noble gas by 
gaining or losing electrons.

The lithium cation with two electrons in its valence shell is like an atom of the noble gas 
helium, and the fluoride anion with eight electrons in its valence shell is like an atom of the 
noble gas neon. Moreover, crystalline lithium fluoride forms from the individual lithium and 
fluoride ions. In this process negative fluoride ions become surrounded by positive lithium 
ions, and positive lithium ions by negative fluoride ions. In this crystalline state, the ions have 
substantially lower energies than the atoms from which they have been formed. Lithium and 
fluorine are thus “stabilized” when they react to form crystalline lithium fluoride.

We represent the formula for lithium fluoride as LiF, because that is the simplest   formula 
for this ionic compound.

Ionic substances, because of their strong internal electrostatic forces, are usually very 
high melting solids, often having melting points above 1000 8C. In polar solvents, such 
as water, the ions are solvated (see Section 2.13D), and such solutions usually conduct 
an electric current.

● Ionic compounds, often called salts, form only when atoms of very diferent 
electronegativities transfer electrons to become ions.

PracTice ProBlem 1.3 Using the periodic table, which element in each pair is more electronegative?
(a) Si, O  (b) N, C  (c) Cl, Br  (d) S, P

•••

1.3B Covalent Bonds and Lewis Structures
When two or more atoms of the same or similar electronegativities react, a complete 
transfer of electrons does not occur. In these instances the atoms achieve noble gas con-
figurations by sharing electrons.

● Covalent bonds form by sharing of electrons between atoms of similar 
electronegativities to achieve the confguration of a noble gas.

● Molecules are composed of atoms joined exclusively or predominantly by covalent 
bonds.

Molecules may be represented by electron-dot formulas or, more conveniently, by formu-
las where each pair of electrons shared by two atoms is represented by a line.

● A dash structural formula has lines that show bonding electron pairs and 
includes elemental symbols for the atoms in a molecule.

Some examples are shown here:

1. Hydrogen, being in group IA of the periodic table, has one valence electron. Two 
hydrogen atoms share electrons to form a hydrogen molecule, H2.

H2  HD + DH 9: HCH  usually written  HiH

2. Because chlorine is in group VIIA, its atoms have seven valence electrons. Two chlo-
rine atoms can share electrons (one electron from each) to form a molecule of Cl2.

Cl2  CaClD + DaClC 9: CaClCaClC    usually written    CaCliaClC

3. And a carbon atom (group IVA) with four valence electrons can share each of these 
electrons with four hydrogen atoms to form a molecule of methane, CH4.

H

H

H C HCH4 usually written� 4 HC
H

H
H C H
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Two carbon atoms can use one electron pair between them to form a carbon–carbon 
single bond while also bonding hydrogen atoms or other groups to achieve an octet of 
valence electrons. Consider the example of ethane below.

Ethane

H

H

H C

H

H

C HC2H6
and as a 

dash formula

H

H
H C C

H

H
H

These formulas are often called Lewis structures; in writing them we show all of the 
valence electrons. Unshared electron pairs are shown as dots, and in dash structural for-
mulas, bonding electron pairs are shown as lines.

4. Atoms can share two or more pairs of electrons to form multiple covalent bonds. For 
example, two nitrogen atoms possessing five valence electrons each (because nitrogen 
is in group VA) can share electrons to form a triple bond between them.

N2  CNNC  and as a dash formula  CNi“ NC

Carbon atoms can also share more than one electron pair with another atom to form a 
multiple covalent bond. Consider the examples of a carbon–carbon double bond in 
ethene (ethylene) and a carbon–carbon triple bond in ethyne (acetylene).

C2H4
and as a 

dash formula

Ethene
H

H

H

H

C C
H

H

H

H
C C

C2H2
and as a 

dash formula
Ethyne

C C HHC C HH

5. Ions, themselves, may contain covalent bonds. Consider, as an example, the ammo-
nium ion.

H

H

H N HNH4 and as a
dash formula

��� H

H
H N H

•••
PracTice ProBlem 1.4 Consider the following compounds and decide whether the bond in them would be 

ionic or covalent.
(a) KCl  (b) F2  (c) PH3  (d) CBr4

Helpful Hint
the ability to write proper lewis 
structures is one of the most 
important tools for learning organic 
chemistry.

1.4 how To Write leWiS StructureS

Several simple rules allow us to draw proper lewis structures:

1. Lewis structures show the connections between atoms in a molecule or ion using 
only the valence electrons of the atoms involved. Valence electrons are those of an 
atom’s outermost shell.

2. for main group elements, the number of valence electrons a neutral atom brings 
to a Lewis structure is the same as its group number in the periodic table. 
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PracTice ProBlem 1.5 Write the Lewis structure of (a) CH2Fl2 (difuoromethane) and (b) CHCl3 (chloroform).

•••

carbon, for example, is in group iVa and has four valence electrons; the halogens (e.g., 
fluorine) are in group Viia and each has seven valence electrons; hydrogen is in group ia 
and has one valence electron.

3. if the structure we are drawing is a negative ion (an anion), we add one elec-
tron for each negative charge to the original count of valence electrons. if the 
structure is a positive ion (a cation), we subtract one electron for each positive 
charge.

4. in drawing lewis structures we try to give each atom the electron configuration 
of a noble gas. to do so, we draw structures where atoms share electrons to form 
covalent bonds or transfer electrons to form ions.

a. hydrogen forms one covalent bond by sharing its electron with an electron of another 
atom so that it can have two valence electrons, the same number as in the noble gas 
helium.

b. carbon forms four covalent bonds by sharing its four valence electrons with four 
valence electrons from other atoms, so that it can have eight electrons (the same as 
the electron configuration of neon, satisfying the octet rule).

c. to achieve an octet of valence electrons, elements such as nitrogen, oxygen, and the 
halogens typically share only some of their valence electrons through covalent bond-
ing, leaving others as unshared electron pairs.

the following problems illustrate the rules above.

Write the Lewis structure of CH3F.

sTraTegy and answer:

1. We find the total number of valence electrons of all the atoms:

4 + 3(1) + 7 = 14
q     q   q

C   3 H  F

2. We use pairs of electrons to form bonds between all atoms that are bonded to each other. We represent these bonding 
pairs with lines. In our example this requires four pairs of electrons (8 of the 14 valence electrons).

Hi

H
ƒ

C
ƒ

H

iF

3. We then add the remaining electrons in pairs so as to give each hydrogen 2 electrons (a duet) and every other atom 
8 electrons (an octet). In our example, we assign the remaining 6 valence electrons to the fluorine atom in three non-
bonding pairs.

CH

H

F

H

solved ProBlem 1.1
•••
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Write a Lewis structure for methylamine (CH3NH2).

sTraTegy and answer:

1. We find the total number of valence electrons for all the atoms.

4  5  5(1) = 14 = 7 pairs
q  q   q
C  N   5 H

2. We use one electron pair to join the carbon and nitrogen.

CiN

3. We use three pairs to form single bonds between the carbon and three hydrogen atoms.
4. We use two pairs to form single bonds between the nitrogen atom and two hydrogen atoms.
5. This leaves one electron pair, which we use as a lone pair on the nitrogen atom.

Hi

H
ƒ

C
ƒ

H

i AN
ƒ

H

iH

solved ProBlem 1.2
•••

Write the Lewis structure of CH3OH.

•••
PracTice ProBlem 1.6 

Write the Lewis structure of CH2O (formaldehyde).

sTraTegy and answer:

1. Find the total number of valence electrons of all the atoms:

2(1) + 1(4) + 1(6) = 12
q     q    q

2H   1C   1 O

2. (a) Use pairs of electrons to form single bonds.

Hi

H
ƒ

C iO

solved ProBlem 1.3
•••

(continues on next page)

5.  if necessary, we use multiple bonds to satisfy the octet rule (i.e., give atoms the 
noble gas configuration). the carbonate ion (CO3

2-) illustrates this:

2�

OO

O

C

the organic molecules ethene (C2H4) and ethyne (C2H2), as mentioned earlier, have a 
double and triple bond, respectively:

C

H

H H

H

H

H

C and C C




